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The continuous growth of global electricity demand is an issue that becomes more 

and more urgent these days. Although the revolution of renewable sources of energy 

has surpassed all expectations over the past decade, the existing static power grid has 

not yet been able to cope with the new dynamic electricity production pattern. Thus, 

innovative ways to balance the load and shift the demand are imperative in order to 

facilitate a sustaining electric power grid. 

Electric Vehicles (EVs), which are rapidly gaining significant market shares across 

the globe, consist of a unique opportunity not only to move to a new low-carbon 

mobility era but also to balance the electricity grid. Although, many studies have 

focused on finding optimal pricing mechanisms and solutions to coordinate EV 

charging, they are based primarily on simulation results, which assume that EV 

drivers are represented by intelligent agents that are fully rational. 

This study bridges the gap between theoretical approaches and real-world behavior by 

taking into account the behavioral aspect of the users. Specifically, a 21 days 

experiment is conducted where 154 users are provided with a smartphone application, 

the TamagoCar app, which simulates the operation and charging of an EV. Through 

TamagoCar app, two smart-charging pricing mechanisms are tested; 1) Real-Time 

pricing (RTP), where the prices presented to the users are related to the electricity 

retail-prices and 2) Variable-rate pricing, where pricing is also correlated with the 

energy capacity desired by the users. 

Results reveal that Variable-rate pricing mechanism significantly improves the 

observed phenomenon of demand peaks when compared to the smart-pricing 

alternative of Real-Time Pricing and leads to an average Peak-to-Average ratio 

reduction of 80-87%. In addition, the study shows that users do not experience a 

significant difference in the cognitive load required to use the two different pricing 

mechanisms. 

This finding implies that variable-rate pricing could be a viable alternative to RTP 

when it comes to EV smart-charging coordination and thus further examination with 

real EV drivers is proposed. In addition, the study presents a user-friendly and already 

applicable interface that can be used in reality in future research projects.  
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The demand for electricity is continuously increasing and will continue to increase 

over the next decades. It is projected that by 2040, global net electricity generation 

only from central producers will almost double to an amount of 39.034 billion kWh 

annually from an amount of 20.240 billion kWh in 2010 (EIA, 2013). In addition, 

world energy-related carbon dioxide emissions are expected to rise from 31,2 billion 

metric tons in 2010 to 36,4 billion metric tons in 2020 and 45,5 billion metric tons in 

2040 according to IEO2013 Reference case (EIA, 2013). Policy makers, 

understanding the direct climate implication of an increased energy demand, have 

already established strict policy regulations that set specific greenhouse gases (GHG) 

emission limits for the foreseeable future. Specifically, the European Union, being 

responsible for around 10% of GHG emissions in 2012, made a unilateral 

commitment to reduce overall greenhouse gas emissions from its 28 Member States 

by 20% in 2020 compared to 1990 (EU-Commission, 2014). This policy has already 

resulted in a notable 19% decrease of EU’s total GHG emissions in 2012 compared to 

1990 (EU-Commission, 2014).  

Even though the overall aggregated energy industry efficiency has improved in terms 

of GHG emissions, road transport, with a share of 22% of EU’s total CO2 emissions, 

has increased its emissions at a total rate of 27% between 1990 and 2009 (Vicente, 

2011). It is argued that technological progress in increasing the fuel efficiency of 

Internal Combustion Engine (ICE) vehicles over the last decade has not been able to 

keep pace with the increasing demand of mobility (Kihm & Trommer, 2014). On the 

other hand, Electric Vehicles (EVs), which consume 50% less energy on average and 

can reduce carbon emissions by 60-100% compared to gas fuel vehicles seem like a 

viable alternative over ICE (Koroleva et al.,2014). 

1.1 Electric Vehicles  

Many governments, such as Norway, the Netherlands, the USA et al., seem to have 

also realized the potential societal benefits of an EV policy adaption and have 

invested heavily in R&D, infrastructure as well as in fiscal motives in order to further 

incentivize customers and render EVs commercially attractive. Specifically, total EV 

spending by EVI (Electric Vehicles Initiative) countries has already reached the 
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amount of $16 billion between 2008 and 2014 resulting in a global EV fleet consisting 

of more than 665.000 vehicles in stock and representing almost 1% of total passenger 

cars in 2014 (EIA, 2015). Norway plays the leading role in terms of EV market 

penetration, which accounts for an astonishing 12,5%, with Netherlands, the USA and 

Sweden following at a rate of 3,9, 1,5 and 1,4% respectively. Sales of EVs in 

California already exceeded 100.000 in 2014, and the state is well on its way to 

doubling that figure (Hant, 2014). It is also estimated that in less than 5 years the 

amount of EVs will increase by 20 times, resulting in more than 20 million EVs on a 

global scale (Trigg et al., 2013). Assuming a global average of 12.000 km per car 

driven annually and efficiency of 0,2kWh/km, the total energy consumption surplus 

will be more than Portugal’s total electricity net generation (43 billion kWh/ year). 

This fact that will pose several challenges in the way the electricity industry is 

currently operating. 

One of the direct implications of the aforementioned potential fast adoption of EVs is 

that it will add an additional burden to the grid and further sharpen the problem of 

demand peaks. The existing power grid was originally designed to distribute 

electricity from large, constantly generating producers to individual consumers. On 

the other hand, renewable sources of energy, such as photovoltaic panels, 

characterized by Schleicher-Tappeser (2012) as the most disruptive energy 

technology, have already enabled consumers of all sizes to produce power themselves 

(prosumers) operating with a new bottom-up control logic and creating new 

innovative business models (e.g. cloud solar initiatives
1
). The combination of both 

top-down grid structure and increasing bottom-up decentralized production will result 

in conflicts with the current power grid control infrastructure and render the electricity 

supply highly uncertain and unreliable.  

 

On the demand side, EVs, during charging time, have the capability to almost double 

the average household load and exacerbate the already high Peak to Average Ratio 

(PAR) (Mohsenian-Rad, 2010). In addition, they can also result in degradation of the 

power quality, voltage problems and potential utility’s and consumer’s equipment 

damage. Hence, methods for balancing the increasing demand are imperative to 

facilitate a safe transition to the new decentralized environment. 

                                                 
1
 http://www.gocloudsolar.com/ 

http://www.pevcollaborative.org/sites/all/themes/pev/files/pictures/august2014_sales_100k.pdf
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1.2 Research Question 

As discussed, the fast penetration of renewable energy sources, such as wind and 

solar, in the global energy mix already necessitates new ways of load balancing and 

demand reshaping. Electric Vehicles are a great opportunity for the electric grid to be 

more stable due to their availability that enables the redistribution of their charging 

throughout the day. 

In theory, there are many models that describe through simulations how EV charging 

can be optimally coordinated in order to achieve a more balanced electrical grid 

(Clement-Nyns et al., 2010; Rotering & Ilic, 2011; Moura et al., 2011; Vandael et 

al.,2013). However, these studies assume that EV drivers are represented by 

intelligent agents that are fully rational and do not account for the actual human 

behavior. In addition, according to Maes (1994), the actual users tend not to trust the 

intelligent agents, a fact that creates an additional gap between theoretical approaches 

and reality.  

In this study, we try to bridge this gap by conducting a real-world experiment and 

providing the users with an intelligent agent (a smartphone application), so that they 

are enabled to intervene and interact with the agent when they think this is 

appropriate. 

Through this prism the research question of this study is the following: 

i. How can EV charging be better organized so that all stakeholders (drivers, 

grid operators) are enabled to reap the benefits of moving to an electric 

mobility economy? 

Based on this fundamental question, a series of important sub-questions arise: 

a. Which smart-charging mechanism can better serve this purpose? 

b. What is the role of Information Technology in this quest and what is 

the role of the EV driver? How can they optimally be combined?  
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2.1  Literature Review 

The literature review will initially address how the topic of demand side management 

evolved over the last 30 years and gradually focus more on the literature of EV 

charging and coordination. The latter is a field that was introduced and popularized in 

the 90’s (Kempton&Letendre, 1997) and has since then gained a lot of scientific 

attraction due to its increasingly significant societal relevance. 

2.1.1 Demand Side Management 

Traditionally, electric utilities
2
 used to invest in capital intensive methods, such us 

pumped storage water plants, flywheels, compressed air etc. in order to store energy 

in times where the supply exceeded the demand. In the late 1980’s utilities began 

recognizing that energy conservation could also take the form of a provided service 

that can lead to similar levels of energy service with fewer kilowatt-hours and at a 

lower cost (Masters, 2013). What emerged was a process called integrated resource 

planning (IRP) or least cost planning (LCP) (Masters, 2013), which consisted of 

utilities’ programs that targeted at controlling energy consumption on the consumer’s 

side of the electric meter. These programs are also known as Demand Side 

Management (DSM) programs. In their initial implementation DSM programs 

included conservation and energy efficiency programs, fuel substitution programs and 

load management programs (Masters, 2013). Regarding the latter category, the 

programs usually aimed at either reducing consumption or shifting consumption.  

According to Mohsenian-Rad (2010), shifting residential consumption can be 

achieved mainly through two methods; Direct Load Control (DLC) (Top down-

control approach) and Smart Pricing (bottom-up control). Direct Load Control allows 

utilities to remotely control certain appliances of a household, such as lighting, 

HVAC, refrigerators etc., in order to provide balancing power. Recently, the concept 

of Smart Home Appliances and its impact on load shifting constituted a central point 

of interest for different research communities such as Computer and Natural Scientists 

                                                 
2
 An electric utility is an electric power company (often a public utility) that engages 

in the generation, transmission, and distribution of electricity for sale generally in 

a regulated market- Wikipedia 

https://en.wikipedia.org/wiki/Electric_power_industry
https://en.wikipedia.org/wiki/Public_utility
https://en.wikipedia.org/wiki/Electricity_generation
https://en.wikipedia.org/wiki/Electric_power_transmission
https://en.wikipedia.org/wiki/Electricity_retailing
https://en.wikipedia.org/wiki/Regulated_market
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(Stamminger, 2008; Son, 2010; Gottwalt, 2011). However, concerns regarding private 

privacy still act as a barrier in the rapid development and adaption of DLC initiatives. 

On the other hand, Smart Pricing targets at reducing load peaks by giving to 

consumers price incentives to switch consumption when demand is high. A 

commonly used residential peak reduction strategy is Time-of-Use (ToU) pricing. 

Typical ToU tariffs signal high prices during work-hours while offering lower prices 

at late-night hours. According to Faruqui & Sergici (2010), the adaption of a ToU 

tariff system can yield reductions of 3-6% in peak demand. Another smart pricing 

alternative is Critical Peak Pricing (CPP), which can take a time-invariant or ToU rate 

structure with a dispatchable high or “critical” price during periods of system stress 

(Herter, 2007). Again, empirical evidence revealed that when CPP is implemented 

and accompanied with several enabling technologies, it can also lead to reductions of 

peak demand at an impressive rate of 27-44% (Faruqui & Sergici, 2010). Finally, Real 

Time Pricing (RTP) is one of the most popular but also controversial alternatives of 

smart pricing. In the US, more than 70 utilities  offered voluntary RTP tariffs from 

mid-1980s till 2004 with a motive to achieve better customer satisfaction rates, reduce 

load peaks, shift load but also encourage load growth (Barbose et al, 2004). While 

these programs revealed moderate load reductions, they did not provide enough 

evidence on the potential positive implications they could have on the wholesale 

market performance and the utility resource planning. Newer studies also highlight 

the consumers’ lack of awareness about their electricity consumption as an important 

factor of the preference of traditional pricing schemes over RTP (Dütschke & Paett, 

2013). In contrast, Borenstein (2005) argues that RTP can lead to large long-term 

societal and economic gains that can by far outweigh the cost for the largest 

consumers. In his paper he estimates that ToU schemes capture only a mere 20% of 

the efficiency gains that can be achieved through RTP. 

2.1.2 Related Work on EV Smart Charging  

Smart pricing in the smart grid era and instant forecasting is becoming increasingly 

important in a variety of complex and dynamic markets (Ketter et al., 2012; Ketter et 

al., 2015). Specifically on EV charging, the literature covers a wide range of scientific 

fields. In their majority, researchers have focused on the technical challenges of 

introducing EVs to the existing grid by recognizing new opportunities, such as using 
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the EVs’ batteries as a storage source for balancing the load curve (V2G) (Kempton& 

Letendre, 1997; Peterson et al., 2010), and proposing coordinated charging control 

mechanisms (Clement-Nyns et al., 2010; Rotering & Ilic, 2011; Moura et al., 2011). 

Vandael et al. (2013) describe a three-step top-down approach to coordinate the EV 

charging, while Kahlen et al. (2012) develop a centrally coordinated fleet operator 

business model that yields significant profits for the fleet aggregator. Many 

companies have also realized the added value of EVs in the future energy scheme, 

most notable of which being the collaboration of Enel, Endesa and Nissan that jointly 

developed a two-way charger capable of supporting a V2G initiative (Enel, 2015). 

The municipality of Utrecht has also already installed 20 bidirectional charging 

stations, co-developed by Stedin and a conglomerate of partner companies and 

institutions (Van Jaarsveldt, 2015). 

Regarding smart pricing, Lyon et al. (2012) evaluate the feasibility of shifting 

charging demand by using ToU and RTP schemes, proposing that ToU pricing is 

worthwhile under all evaluated scenarios, while RTP, although better in terms of 

expected returns, is still not able to justify the additional investment in smart grid 

infrastructure needed. In addition, in order to reduce the common observed 

phenomenon of herding, when a RTP tariff is applied, Valogianni et al. (2015) 

propose a mutliagent approach that applies a hybrid pricing mechanism to coordinate 

charging. According to this approach, which is defined as Variable-Rate pricing, 

prices are signaled to EV users as a function of charging rate (KW) resulting in a 

notable average Peak Reduction of 9,61% when compared to a Real-world scenario 

and 16% when compared to a rate-independent scenario where day-ahead prices are 

signaled that vary during the 24 hour-period but are static and do not change 

dynamically (Similar to RTP). 

However, EV users’ actual response and behavior to smart pricing mechanisms are 

difficult to be estimated just based on theoretical assumptions. Rathnayaka et al. 

(2011) identify and comprehensively analyze prosumer behavioral patterns in order to 

propose an optimal multi-agent architecture. In an effort to understand, which factors 

can influence consumers’ decisions to charge their EVs at different times, Koroleva et 

al. (2014) developed a smartphone application, the TamagoCar app (See paragraph 

3.1), which simulates the experience of owning and charging an EV. By altering the 

http://www.nltimes.nl/author/jvanjaarsveldt/
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pricing mechanisms that are signaled to the end-users (Flat Tariff, ToU, RTP), it is 

observed that they are willing to redistribute their charging behavior.  

2.2 Variable-rate pricing 

Building on the work of Koroleva et al. (2014) and Valogianni et al. (2015), this 

thesis will explore the impact of variable-rate charging in load curve balancing 

through TamagoCar app with the aim to measure the users’ actual behavior when 

compared to the behavior of intelligent EV agents. 

According to the model of Valogianni et al. (2015), EV users are represented by an 

intelligent agent, who is responsible for charging the EV. The grid operator is then 

represented by a control agent, who broadcasts price signals to the EV agents and is 

responsible for monitoring their aggregate consumption taking into account the 

existing production level. The proposed price function that is broadcasted every time-

step t by the control operator and is dependent on the charging rate has the following 

form: 

Pt (rt) = P0,t +  atrt 

Equation 1Variable –rate pricing formula 

where rt is the charging rate in time step t, at is the slope of the price curve with 

respect to charging rate and  P0,t  is the price for zero demand, which can be 

determined as a percentage of the wholesale price of electricity at time t. As 

previously stated, Valogianni et al. proved that the introduction of a variable rate 

charging mechanism through intelligent EV agents led to significant balancing of the 

demand when compared to the rate-independent pricing mechanism and a Real World 

scenario. However, these outcomes are purely based on simulations results assuming 

cost minimizing intelligence agents. We are taking this work to the next level by 

putting the mechanism in practice. We provide the EV owners with an intelligent 

agent (smart-phone application) and let them decide on how to use it. 
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2.3 Conceptual Framework formulation 

The main objective of the current thesis is to test the boundaries of variable-rate 

charging mechanism in the real world through TamagoCar app and assess the 

behavior of EV users when compared to the intelligent EV agents.  

In addition this thesis aims: 

1. At measuring the impact of cognitive load required for this method to be 

implemented directly to end EV users and comparing their results with the 

ones of the intelligent EV agents 

2. At providing recommendations about improving the method so that is directly 

applicable to real experiments 

3. At analyzing the managerial implications stemming from a successful 

implementation of  variable-rate pricing and the shared value that can be 

created among multiple stakeholders (EV users, grid operator, society) 

As previously mentioned, Valogianni et al (2014) found that the introduction of 

variable-rate pricing led to 9,61% PARP reduction when compared to a real-world 

charging scenario and 16% when compared to rate-independent pricing. Based on the 

latter finding and not having any additional evidence that contradicts it, it is expected 

that variable-rate pricing will lead to significant balancing of the demand when 

compared to rate-independent pricing (RTP). 

H1: Variable–rate pricing mechanism will lead to significant balancing of the demand 

as compared to rate-independent pricing (RTP) 

In addition, Valogianni et al (2014) observed that when selecting a variable at that is 

correlated with the Retail price, the EV agents adjust this value in order to reach the 

desired load profile. This leads to an even better aggregate demand curve than with 

constant at. Accordingly, we expect that a similar pattern will be observed in the 

present thesis. 

H2: Inserting a variable at that depends on the Retail Price each time period t will 

result in better balancing results than having a constant at 



16 

 

Finally, it is expected that variable-rate pricing modelling will increase the amount of 

decision-making time required. This fact will most probably lead to additonal 

cognitive loading of the users. 

H3: Variable-rate pricing will present higher values of cognitive load 

 

 

Figure 1 Conceptual Model 

 

Peak to average ratio (PARP) 

The balancing of the demand will be measured primarly through PARP. The PARP is 

a measurement of the highest peak of a load curve divided by the average. The more 

efficient the grid, the fewer the demand peaks.  The formula that calculates the PARP 

is the following: 

𝐏𝐀𝐑𝐏 =  
|𝐱|𝐏𝐞𝐚𝐤

𝟐

𝐱𝐑𝐌𝐒
𝟐

  

Equation 2 Peak to Average Ratio (PARP) 

Pricing mechanism 

The pricing mechanism variable will represent different experimental conditions that 

will be described in the next chapter. To illustrate the hypothesis that a change in the 

pricing mechanism will lead to a differentiation of the Peak to Average Ratio, the 

pricing mechanisms under examination will be defined as nominal variables 

expressing different experimental treatments. 

0: Rate-independent pricing (RTP) 

1: Variable-rate pricing with constant a  

2: Variable-rate pricing with variable a 

Cognitive load 

According to Simon (1996), people are not totally rational and do not always respond 

in a perfect cost minimizing manner. Most of the times they can be influenced by the 
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cognitive load which can result in them taking sub-optimal solutions. Thus, this thesis 

will measure the amount of cognitive load of each user to confirm if there were 

significant differences among the three pricing shemes. 

According to Pass and Merrienborer (1994), Cognitive Load (CL) is imposed on the 

cognitive system during the completion of a task. There are three types of cognitive 

load: intrisic, extraneous and germane CL. The former refers to the intrinsic nature of 

the material and cannot be easily altered (e.g., the calculation of 1+1 versus solving 

a differential equation). The extraneous CL is induced by inadequate instructional 

design. The latter, germane CL, directly reflects learners' efforts to construct and store 

schemas during learning (Sweller, Van Merrienboer, & Paas, 1998). For this thesis, 

the level of intrisic CL will be measured in order to assess if high levels of smart 

charging complexity led to unexpected decisions. 

  

http://www.sciencedirect.com/science/article/pii/S0360131510000709#bib29
https://en.wikipedia.org/wiki/Differential_equation
http://www.sciencedirect.com/science/article/pii/S0360131510000709#bib38
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3.1 Introduction 

In order to measure the actual behavior of the EV users under different pricing 

schemes, a mobile application that simulates the EV usage was employed. 

TamagoCar app, developed by RSM in collaboration with TU Delft, consists of an 

innovative and well suited platform to explore the objective of this thesis. In 

particular, TamagoCar app provides the users with the experience of operating and 

charging a car while commuting on foot, by bike, by car or by train/bus (Koroleva et 

al., 2015). The app uses GPS services to measure the distances covered by the users 

and discharges the EV battery accordingly. The users have to manually start/end their 

commutes through the “Commute Now” functionality and recharge their batteries 

using the “Charge” functionality. In addition, the users can monitor their charging and 

commuting history using the “History” button and compare their aggregated scores to 

their fellow users through the “Leaderboard” functionality (See Figure 2). The 

application was developed both in Android and iOS environments. 

 

Figure 2 TamagoCar application main page 
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3.2 Experimental Group 

The experiment was conducted among students of the Master in Business Information 

Management at Rotterdam School of Management. The students were urged to use 

the app during their daily commutes from or to the university regardless of the 

transportation mode (bike, bus, bike etc.). The participation in the experiment was 

optional but secured bonus grades to the participants. Specifically 0,2 points were 

awarded to all participants provided that they will commute once per day on average 

and another 0,2 were awarded to the top 30 most efficient drivers based on their 

leaderboard score. This way the students were motivated not only to participate in the 

experiment but also to optimize their charging profile as efficient as possible. 

3.3 Pre-experiment survey: Battery Design 

In order to decide the size of the simulated battery, an initial questionnaire was 

distributed that asked the participants to specify how many kilometers they commute 

on average every day. In addition, the questionnaire asked the participants to specify 

the transportation mode they intended to use in their daily commutes as well as which 

operation system they had in their mobile phones. The specific questions as well as 

the descriptive statistics are presented below: 

1. How do you commute on your daily transportation? 

2. Can you give an approximation of the total distance you travel every day 

(back and forth) 

3. What is the operation system of your mobile phone? 

Transportation mode frequencies 

  Frequency Percent 
Valid 

Percent 

Cumulative 

Percent 

Train/tram/bus 45 28,7 28,7 28,7 

Bike 97 61,8 61,8 90,4 

Car/motorcycle 8 5,1 5,1 95,5 

Foot 7 4,5 4,5 100 

Total 157 100 100   

Table 1 Transportation mode 
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Average daily commute estimation 

  N Minimum Maximum Mean 
Std. 

Deviation 

Distance 157 1 170 22,97 27,56 

Table 2 Descriptive statistics for average daily commute distance (in km) 

 

Operating system 

  
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent   

android 70 44,6 44,6 44,6 

iOS 87 55,4 55,4 100 

Total 157 100 100   

Table 3  Operating system 

 

From Table 2, it can be observed that the average daily commute of the students 

spanned from 1 to 170 km with an average of 22,97 km. Thus a range of 24 km was 

decided for the battery of the app which corresponds to an equivalent energy capacity 

of 4kWh assuming EV efficiency of 6 km/kWh. 

3.4 Experimental design 

The experiment took place from the 28
th

 of September 2015 until the 21
th

 of October 

2015. To validate the hypotheses that were described in the previous chapter, three 

experimental conditions were formed throughout the three weeks of the experiment. 

During the first week the students were tasked to charge their EVs through a RTP 

mechanism, while during the second and third week they were given a variable-rate 

charging mechanism (one week with constant at and one week with variable at). 

3.4.1 Week 1: RTP 

Throughout the first week, the participants were experiencing a Real Time Pricing 

mechanism. The application provided a user with a price forecast for the next 12 

hours. The participants could then decide if they wanted to charge immediately or 

schedule the charging for the time that the price was lower. The charging rate in this 

case was constant at a rate of 3,6kW. The following figure depicts the 24-h price 

curve that was used during the first week.  



21 

 

 

 

Figure 3 Retail Prices during the 24-h  

3.4.2 Week 2: Variable rate with constant a 

In order to experiment with the variable-rate pricing mechanism, a new module had to 

be introduced to the existing version of the app. For this, a cost minimization 

algorithm was developed and inserted in the app.  The users had to select their desired 

battery capacity and time availability (h) through the sliding bars of the application. 

Then, the cost minimization algorithm returned the total charging price to the user 

(See Figure 4).  

 

Figure 4 Screenshot from variable-rate pricing mechanism charging 
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The objective function of the minimization algorithm is calculated by first multiplying 

Equation 1with rt to find the total price for time period t and then replacing P0,t with 

the Retail Price (Rt) for time t. The sum of all the prices between the current hour, n, 

and the availability period n+h is the objective function. The goal of the algorithm is 

to calculate the optimal charging schedule that would minimize the total cost of 

charging for the user.  

𝑚𝑖𝑛 ∑ Rtrt+at ∗ rt
2

n+h

t=n

 

Equation 3 Objective function 

The Retail prices that were used for this experimental setting were the same as with 

those of week 1 for comparison purposes. Also, throughout week 2 αt had a constant 

value of 0,2 for all time periods t. 

3.4.3 Week 3: Variable rate with variable a 

In order to examine the validity of H2, at was correlated with the Retail Price. To 

better observe the difference between the results of Week 2 and Week 3, it was 

decided to correlate at with Rt but keep always a minimum at of 0,2. 

at =  0,2 + Rt − 0,08 

Equation 4 𝐚𝐭 depending on the retail price 

3.5 Leaderboard functionality 

As previously described, in order to add the social element to the application and 

incentivize the participants to charge as efficiently as possible, a leaderboard 

functionality was designed. The score of the users depended on their average cost paid 

per kWh. In addition, a penalty was given when the users were commuting without 

having enough battery. The equation for the score was calculated as follows: 

 

Score = (Total cost spent for charging + towing cost) / Total kWh charged 

Equation 5 Score formula 
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Where, 

Towing cost = (towed distance/6)*0.37 

 Equation 6 Towing cost 

3.6 Post-experiment survey: Cognitive Load 

Finally, to assess the level of mental effort that every experimental condition required 

from the participants, a post-experiment survey was handed. Based on the self-rating 

measurement scale of cognitive load proposed by Bratfish et al. (1971), the questions 

for the three weeks were structured in the following way: 

“During the … week, when you were deciding on how to charge your Electric Vehicle 

more efficiently, did you feel that you made a great deal of mental effort? 

Please rate your effort on the 5-point scale”.  

3.7 Example of using the app (Week 2) 

Before moving to the results of the experiment, a real case example of using the app 

will be described. This way the reader will have the opportunity to easily understand 

how the participants experienced the simulated ownership and operation of the EV. 

On the 7
th

 of October, user 83 had to go from his house to Erasmus University by bike 

in order to attend the class of Designing Business Applications. At 7:48, he logged in 

TamagoCar app and pressed the commute button. After 9 minutes, he ended his 1,7 

km commute. During this time he consumed 0,28 kWh of his simulated EVs battery 

that left him with 1,39 kWh from a total battery capacity of 4kWh (as explained in 

paragraph 3.3). 

In order to recharge his battery for future usage, he decided to use the charging 

functionality of the app at 8:00. As shown in Figure 4, the user after experimenting 

with different availability hours and desired capacity values, he selected to charge his 

EV for 1 hour to a total capacity of 1,77 kWh. This choice signaled a total cost of 

0,045 € or 0,118€/kWh, which resulted from the cost-minimization routine as 

described in paragraph 3.4.2.  
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4.1 Introduction 

In the first chapter the subject under examination was introduced and the research 

question of the study was specified (Paragraph 1.2). In the second and third chapter 

the study focused on the specific smart charging mechanisms that would be examined 

and formulated the proposed framework under which the developed hypotheses would 

be tested. This chapter will evaluate whether the developed hypotheses are supported. 

The chapter starts with the analysis of the sample and continues with the experimental 

treatment of the data. Finally, the post-experimental survey on cognitive load is 

analyzed. The conclusions of the results are presented in the following chapter. 

4.2 Sample 

The total number of students that took part in the experiment was 154. Of those 

59,7% were male and 36,4% female (Table 4). The average age of the sample was 

23,22 years old, which can be considered as a rather young and tech-savvy sample 

(Table 5). The age distribution of the sample is depicted in Figure 5.  

The average distance covered throughout the three weeks of the experiment was 

117.571 km or 19,60 kWh when converted to energy-equivalent units (See Paragraph 

3.3). To account for location mistakes in the commute functionality, all commutes 

that had an average speed of more than 34km/s (or 122,4 km/h) were deleted. The 

average capacity charged per user was 23,54 kWh, which implies that the users were 

charging considerably more than they actually needed for their commutes. 

 

Gender 

  Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Female 56 36,4 36,4 40,3 

Male 92 59,7 59,7 100,0 

Not Mentioned 6 3,9 3,9 3,9 

Total 154 100,0 100,0  

 

Table 4 Gender distribution 
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Figure 5 Age distribution  

 

Descriptive Statistics 

 

N Minimum Maximum Mean 

Std. 

Deviation 

Age 147 20 27 23,22 1,46 

Distance 154 0 862422 118334,88 118569,53 

Charges 154 2,64 94,84 23,54 15,06 

 
Table 5 Descriptive Statistics of the experiment 

 

The driving behavior in terms of km at each hour of the day between the different 

pricing schemes (RTP, Variable-rate pricing with constant a, Variable-rate pricing 

with variable a) is depicted in Figure 6. The driving was done primarily during the 

day (6-19) whereas there were only small amounts of commutes covered during the 

night hours (21-5). In addition, there was a commonly observed driving peak between 

3-6 PM and at 7-8 AM, which could be explained by commutes of the students from 

and to the university. However the total distance covered during the first week was 

much higher: 8900,72 km when compared to 5056,10 and 4266,76 km of week 2 and 

week 3 accordingly. This fact is attributed to the rules of the experiment that required 

one commute per day on average from the participants. This means that some students 

may did complete their required commutes already from the first and second week. In 
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addition, the decline in the distance commuted can be explained by the accumulated 

cognitive load that was required by the participants in the time horizon of the 

experiment. To counterbalance this effect and to secure the validity of the result, a 

standardized evaluation of the charging patterns will be proposed in the next 

paragraph. 

 

Figure 6 Commute pattern in km during the 24-h 

A typical example of the charging pattern can be observed in Figure 7. In the graph, 

the charging behavior of 10 random users during week 1 is presented. We can see that 

most of the charging happens early in the morning (3-6 am) or after 2pm. This pattern 

can be explained by the low retail prices at 6am and 4pm (See Figure 3), which 

created notable herding phenomena during these specific timeframes. In the next 

paragraph we will investigate whether these phenomena also exist in the total 

experimental sample and whether the introduction of a variable-rate pricing 

mechanism can alleviate the herding problem. 

 

Figure 7 24h charging pattern of 10 random users during week 1 (RTP scheme) 
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4.3 Experimental Treatment 

As described in paragraph 2.3, we want to test whether the amount of capacity 

charged at each hour of the day is significantly different between the different pricing 

mechanisms. For that, the total charging amount per hour was divided by the total 

distance commuted each week (converted in kWh). In Figure 8 and Figure 9, the 

charging pattern before and after the standardization is presented. 

 

 

Figure 8 Charging pattern before Standardization (in kWh) 

 

 

Figure 9 Charging pattern after Standardization (in kWh/kWh) 

By taking a first look at the graphs, we can observe that there is a notable 

improvement in terms of peak reduction between week 1 and weeks 2 and 3, which 

means that variable-rate pricing contributed to a remarkable smoothing of the demand 

curve. As described in the previous paragraph and explained by Valogianni et al. 

(2014), this effect can be attributed to the phenomenon of herding at 6 AM and 4 PM 

during the first week, which is explained by the retail price curve; as observed in 
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Figure 3, the retail prices present a minimum value of 0,08€/kWh at 6 AM and a local 

minimum of 0,11€/kWh at 4PM. 

To statistically validate this finding among the individuals’ pattern, we want to firstly 

check whether our data in the three weeks are normally distributed. Kolmogorov-

Smirnov (KS) test is highly significant for all variables we test (D(154)= 0,122-0,155, 

p< 0,05)). Furthermore, the three samples are dependent with each other, since the 

participants are the same and the measurements are repeated under different 

experimental conditions. Therefore, we use Friedman tests as an alternative to 

ANOVA (Statistics, 2015). As expected, for each hour, the capacity distribution 

charged is significantly different between the three pricing schemes (χ
2
(2)>50, 

p<0,01). This can be explained by the different way the charging rate is calculated in 

the first and second/third week; the charging rate at each hour t will be always 

significantly lower when variable-rate pricing is implemented, since this method 

optimizes the charging schedule with rt often taking values of less than 1kW (when in 

week 1 rt is constant at a rate of 3,6 kW). 

To compare weeks 2 and 3 separately, pair-sample sign tests with a Bonferroni 

correction are conducted as an alternative to t-tests, since the data and the differences 

between pairs (D(154)> 0,08, p<0,05)  are not normally distributed (Statistics, 2015). 

It is found that median charging capacity is significantly different only at 12 AM (Z= 

-3,064, p= 0,002). During the rest of the day, the median charging capacity is 

statistically equal. This finding implies that, apart from 12 AM, inserting a variable at 

did not lead to a significant change in the individuals’ charging pattern. 

 

Figure 10 Charging pattern of Week 2 and 3 seperately 
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In addition, we would like to compare the overall contribution of the pricing schemes 

to the efficiency of the grid. As discussed in the previous chapters, one way to 

measure this is the Peak to Average Ratio, where the peak load is squared and divided 

by the RMS value squared. The results show a notable 80-88% reduction of PARP, 

when variable-rate pricing is implemented (Table 6). Thus, H1 is supported. This 

finding is primarily explained by the smoothing of the herding phenomena that 

occurred during the first week of the experiment (Figure 9). Hence, it can be 

concluded that inserting a dynamic component in the pricing structure leads to more 

efficient grid performance. On the other hand, contrary to our initial expectations, the 

introduction of a variable at that is related to the Retail prices does not seem to lead to 

a further reduction of PARP and thus H2 is not confirmed. To understand the 

underlying reasons for this result, the level of cognitive load in week 2 and 3 will be 

separately assessed in the next paragraph. 

Peak to Average Ratio 

 

PARP 
PARP 

Reduction (%) 

Peak 

Reduction (%) 

Week.1- RTP 14,37 
  

Week.2 -Variable rate 

with constant α 
1,82 87,33 81,50 

Week.3 - Variable rate 

with changing α 
2,74 80,92 76,66 

Table 6 Peak to Average Ratio  

4.4 Cognitive Load 

The descriptive statistics of the post-experiment survey are presented below. In total, 

110 students out of the 154 participants replied to the survey. From Table 7, it is 

observed that variable-rate mechanism resulted in higher values of cognitive load. 

This result is in line with our initial expectations, since this method is more difficult to 

be understood if detailed information is not provided to the users. 

Descriptive Statistics: Cognitive Load 

 

N Minimum Maximum Mean 

Std. 

Deviation 

Week.1 110 1,0 5,0 2,92 1,08 

Week.2 110 1,0 5,0 3,20 ,96 

Week.3 110 1,0 5,0 3,12 1,22 

Table 7 Post-experimental survey results on cognitive load 
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To examine whether variable-rate pricing led to statistically significant higher values 

of cognitive load, the responses of week 2 and week 3 will be treated as one. The KS 

test reveals that neither the samples (D(110)= 0,155-0,217, p<0,05)  nor the pair 

differences are normally distributed (D(110)= 0,106, p<0,05) and thus a pair-sample 

sign test with a Bonferroni correction is conducted. The results of the test suggest that 

the introduction of variable-rate mechanism did not lead to significant median 

differences in the cognitive load of the participants (Z=-0,804, p=0,421). Thus H3 is 

not confirmed. This result implies that the participants did not have to make a 

significant amount of additional mental effort to use variable-rate mechanism, even 

though the mechanism was perceived as more difficult to understand, as observed in 

the feedback session of the questionnaire. This phenomenon can be attributed to the 

fact that the mobile application was suggesting already optimal pricing solutions to 

the participants and thus they did not have to be cognitive overloaded to perform in an 

efficient way. 

Finally, by comparing the cognitive load of Week 2 and Week 3 separately, it is also 

observed that no statistical difference is found (Z= -0,733, p=0,464). This finding is 

logical since the participants got more acquainted with variable-rate mechanism 

already from week 2, resulting in non-significant but still lower levels of cognitive 

load during week 3 (See Table 7).   
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5.1 Introduction 

The first chapter of the study formulated the problem statement and research 

questions. By means of the theoretical and empirical part, the research questions can 

now be answered. This chapter interprets the results following from the experimental 

part of the study and analyzes its limitations as well as managerial implications. 

5.2 Key Conclusion 

The main contribution of this study was to bridge the existing gap between the 

theoretical approaches and the reality of EV charging by taking into account the 

behavioral aspect of EV users (See paragraph 1.2). In addition, this study intended to 

evaluate the best smart charging practices that would lead to a more efficient electric 

grid. TamagoCar application played a crucial role in this quest, since it enabled the 

users to interact with their smartphones by letting them intervene when they believed 

this was appropriate.  

The study resulted in the following key conclusions: 

1. In line with the results of Valogianni et al. (2014), the introduction of 

Variable-rate pricing mechanism significantly improved the observed 

phenomenon of demand peaks when compared to the smart-pricing alternative 

of Real-Time Pricing and led to an average PARP reduction of 80-87%. This 

means that variable-rate pricing, which now has been tested both in a 

simulated and in a reality scenario, tends to result in a significant smoothing of 

the demand curve. The underlying reason pertains to the fact that EV users are 

cost-minimizers and thus when they were to select based on a RTP scheme, 

they were choosing only the cheapest time-frames. This in turn resulted in 

great demand peaks (herding phenomena) during these hours (Figure 6), 

which variable-rate pricing mechanism managed to smoothen. 

2. Introducing a variable at parameter that was depending on the Retail Price did 

not lead to an even better smoothing of the demand curve. This result was not 

expected since variable at made prices more aggressive and this would have 
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incentivized users to distribute their charging profile in a more efficient way. 

The result may be explained by the difficulty that the users were facing to 

understand the underlying mechanism of variable-rate pricing already from 

Week 2. As explained in paragraph 4.3 no significant difference was observed 

in the cognitive load experienced in week 2 and week 3. 

3. The cognitive load required by the students did not significantly change when 

variable-rate pricing was introduced. This result implies that similar 

mechanisms can be introduced in real-world initiatives without requiring 

greater amounts of mental effort from the users, while simultaneously helping 

in improving the efficiency of the electric grid. 

5.3 Limitations 

Before concluding with the managerial implications of the study, an overview of the 

limitations of the experiment will be presented. This part aims at establishing the 

limits of the present study while proposing modifications for future research 

initiatives. 

Firstly, the experiment was conducted in a smart mobile phone environment as part of 

a university course. The 154 participants (students) were motivated to frequently use 

the app in order to obtain a bonus grade in the course. This means that the result could 

have been different if the mechanism was applied in a real-world experiment with real 

EV drivers. In this case the drivers would have had real motives to use the app in 

order to save money on their charging costs. Nevertheless, the study presented an 

interface of real-time pricing mechanisms that could already be applied to real-world 

experiments and is user friendly (See Figure 4). In addition it confirmed that variable-

rate pricing can lead to a more efficient grid. 

Related to the first limitation, it should be underlined that our sample was of a really 

young age (Mean age: 23), which can be considered as a rather tech-savvy sample. 

This fact was augmented by the academic background of the participants, who were 

attending the Master in Business Information Management. By changing the profile of 

our sample, different results could have been observed. 

Finally, a major limitation of the study resulted from several GPS/location 

miscalculations that occurred during the experiment. When using the commute 
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functionality, some participants noticed that the app calculated more kilometers than 

they actually were doing. To counterbalance this phenomenon, a data clearing based 

on the commute speed was conducted before the experimental treatment (paragraph 

4.2). However, it should be mentioned that this effect did not influence the results of 

the study, since the charging patterns (research objective) were accurately measured. 

5.4 Managerial Implications 

In light of the continuous increase of renewable sources of energy in the global energy 

mix as well as the fast acceleration of electric mobility, innovative ways of increasing 

demand flexibility are imperative. This study resulted in two main managerial 

implications on how EV charging can optimally be organized to secure an efficient 

electric grid, while taking into account the behavioral aspect of the EV driver. 

From the side of the grid operator 

Real-time pricing without a dynamic proposal creates herding in times when retail 

prices are low. Herding in turn creates demand peaks and destabilizes the grid. For a 

successful peak reduction, variable-rate pricing mechanism is proposed. With this 

method, pricing is not only related to the retail prices, but also to the amount of 

capacity desired by the EV drivers. The study presented a 77-82% reduction in peak 

load when moving from Real-Time Pricing to variable-rate pricing. 

From the side of the driver 

The study revealed that intelligent agents can actually work with and support humans. 

Through the usage of a smart phone application, people can monitor and in many 

cases override the decisions of the agents if they think this is appropriate. 

Additionally, the interaction between human and intelligent agent does not seem to 

cognitively overload the users and thus such a methodology is proposed for future 

real-world experiments. 
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